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The flame length of a plume in incompressible cross-flow is analyzed and the results are compared 
with those obtained in a reacting water tunnel experiment. It is argued that the axial vortex pair in 
the flow arises from the plume momentum normal to the free stream, the momentum flux being 
equivalent to the impulse from the buoyant force. 
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I. INTRODUCTION 
The structure, trajectory and mixing rate of 
transverse jets have been investigated in 
numerous experiments, such as in [1-5].  The 
jets are driven by the initial momentum flux 
from the nozzle, without buoyancy differences 
between the jet fluid and the ambient fluid.  A 
prominent feature of the flow is a pair of 
counter-rotating vortices.  In the far field, those 
vortices are nearly parallel and move with the 
freestream.  [6] (henceforth BB) argue that a 
temporal, two-dimensional vortex pair can 
model the dynamics and mixing, resulting from 
a line impulse.  Above the mixing transition, the 
mixing is entrainment-limited; so that BB’s 
simple dilution model [6] describes the mixing 
rate, to within an adjustable constant. It appears 
that the buoyancy-driven plume has been less 
studied [7-8].  In contrast to the jet, the 
conserved quantity for such a plume is the 
buoyancy force rather than the jet thrust. [9] 
presented an analysis of a source of buoyancy 
and [10] extended this to allow for mass, 
momentum and buoyancy.  As described in 
detail in the sections to follow, [10] determined 
the location of the mixing transition for a plume 
without cross-flow and considered the case of 
momentum being in the vertical direction and of 
the same sign as the buoyancy forces. Other 
authors such as [11] and [12] presented 
numerical schemes for evaluating forced and 
angled plumes with a given set of initial 
conditions.  [13] proposed a mathematical model 
that clearly presented a division of vertical 
plumes into three basic categories: buoyant jets, 

mass sources, and pure plumes. The main focus 
of their work was however concentrated on 
studies of angled plumes. The mathematical 
model presented by [13] is found to be valid 
only for cases with buoyancy and momentum 
flux with the same sign. 
 

II. ANALYSIS 

The present paper is a direct application of the 
ideas developed for transverse jet by BB to 
transverse plumes. The appropriate temporal 
problem for the transverse jet is the line, or two-
dimensional, vortex pair. For the transverse 
plume, the temporal problem is the two-
dimensional thermal. The temporal problem 
should be a valid approximation of the 
corresponding spatial problem if the curvature of 
the spatial flow can be ignored. This 
approximation is expected to be asymptotically 
valid in the far field of the flow, where the 
curvature asymptotically vanishes. 
     The conserved quantity is the buoyant force 
per unit length and per unit mass 
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where g '  is the buoyancy acceleration.  The 
subscript “0” indicates the initial value at the 
nozzle.  The nozzle velocity is Vn , the nozzle 
area is A0, and the freestream velocity is V! . 
     From dimensional considerations 
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where  
!! (t)  is the vortex size as a function of 

time t. 
      Assuming a Galilean transformation, the 
downstream station x is related to t by  
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 and the spatial problem becomes 

           
        !(!)

!
= !"#$%. !

!

!/!
                 (4)                 

Where 

                         ! ≡ !
!!!

                      (5)                                        

is an intrinsic length scale of the problem. 
 
Eq. (4) for the transverse plume contrasts with  
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for the transverse jet, where the corresponding 
length scale  is 
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according to [6].  Here T is the jet thrust and ρ is 
the freestream density. 

 

III. MIXING AND FLAME LENGTH 
The flame length is derived using Broadwell’s 
dilution argument in BB. Per unit time, the 
volume of mixed fluid at the flame tip divided 
by the volume of nozzle fluid must be 
proportional to ! +1( ) , where !  is the volume 
equivalence ratio of ambient to nozzle fluid 
necessary to react all the nozzle fluid.  So 
 

             
!!!!

!

    !!!!
= !"#$%. (∅ + 1)            (8)                                       

 
where ! f  is the vortex size at the flame tip. 
      Eq. (1)-(8) yield 
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where xf is the streamwise station at the flame tip 
and d is the nozzle diameter.  The flame length 
depends weakly on the nozzle Richardson 
number, 
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     We have implicitly assumed that the nozzle 
thrust is sufficiently small compared to the 
buoyant flux.  This assumption is not true at the 
nozzle if Ri0 is less than one.  Further from the 
nozzle, however, the accumulated impulse of a 
continuous buoyant force eventually surpasses 
that of a jet, so that Eq. (9) should be 
asymptotically valid at sufficiently large 
equivalence ratio. [10] determined the location 
of this transition for a plume without cross-flow. 
 With a cross-flow, the transition between a 
momentum-dominated flow and a buoyancy-
dominated flow can be estimated by equating the 
impulse per unit length of the jet with the plume 
in their corresponding temporal problems.  
 

They are equal at time 
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corresponding to station  
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This can be expressed as 
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where !0 is the density of the injected fluid. Eq. 
(10) is expected to be valid if x*<<xf.  

 

IV. EXPERIMENT 
An aqueous plume was introduced through the 
test-section ceiling of a water tunnel, which    
provided the cross-flow (Fig 1 and Fig 2). The 
water tunnel apparatus is described in [14].   
Briefly, the test section is 0.7 m high x 0.7 m 
span x 3 m long, through which a dilute and 
transparent solution of sulfuric acid flowed.  A 
red solution of sodium hydroxide, sodium 
chloride, and phenolphthalein (a pH indicator) 
drained into the water tunnel through a jet nozzle 
of 0.019 m diameter from a reservoir above the 
water tunnel. The solution drained exclusively 
under gravitational flow, with no other 
momentum source. When the two fluids mixed, 
a rapid chemical reaction caused the red injected 
solution to disappear.  The volume equivalence 
ratio  (the volume ratio of ambient to inject fluid 



 

required to effect dilution and disappearance) 
was varied by changing the relative 
concentrations of the acid and base.  The 
velocity of the jet was estimated from the 
measured volume flow rate as determined by the 
rate at which liquid emptied from the reservoir.  
No correction was made to the velocity profile 
for the thickness of the nozzle boundary layer 
 

 
 

FIG. 1. Flow geometry 

 

 

    FIG. 2. Flow visualization at Uj=0.11 m s-1, Vn= 
0.12 m s-1 20.66, xf  = 0.9 m, Ref  = 10,000. 

    The nozzle Reynolds numbers Reo varied 
between 400 and 6000.  While this range is not 
always above the Reynolds number of the 
mixing transition, approximately a few thousand, 
the important requirement for the flame length is 
that the mixing be entrainment-limited by the 
flame tip.  So the Reynolds number at the flame 
tip must be sufficiently large.  From Eq. (2) 
through (10), it is 
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where !  is the kinematic viscosity of the fluid.  
The Reynolds number at the flame tip varied 
from 1000 to 21,000. 
     The coordinates at the end of the red flame 
were estimated visually.  This measurement was 
performed using video recording technique with 
the help of a 6.1 mega-pixel camera with 3X	  
optical	   zoom	   (35	   mm	   equivalent:	   36–108	  
mm)	  which	   permitted	   taking	   pictures	  with	   a	  
shutter	   speed	   of	   1/1400	   sec,	   providing an 
appropriate resolution of the flame end. 
     The nozzle fluid was nearly saturated with 
salt in order to minimize the fraction of the total 
flame length that was influenced by jet 
momentum rather than buoyancy.  The tunnel 
speed was progressively varied, so that the 
velocity ratio of freestream to nozzle flows 
varied from 0.6 to 22. 
    The chord flame length is defined in terms of 
the flame tip coordinates. 
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    FIG. 3. Chord length of the “flame” for various 
values of equivalence ratio: 22.4(О); 21.32 (☐); 20.7 
(Δ); 18.3 (◊). 

    It is plotted as a function of the velocity ratio 
for different values of equivalence ratio in Fig 3.  
Finally, the streamwise flame length is shown in 
Fig 4, and in normalized form in Fig 5.  While 
there is considerable scatter, the results are in 
accord with the model, which predicts a constant 
value of the normalized flame length for all 
velocity ratios.  The dimensionless flame length 
Xf  is expressed as 
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    FIG.4. Downstream flame length for various values 
of equivalence ratio 22.4(О); 21.32  (☐); 20.7 (Δ); 
18.3 (◊). 

 

 
    FIG.5. Normalized downstream flame length.  
Notation as in FIG. 3.  
 

V. DISCUSSION 

    As with the transverse jet, the flame length of 
the transverse plume is independent of the 
Reynolds number Re0 above the mixing 
transition [6].  All data shown are from this 
regime.  For lower Reynolds numbers, the flame 
length is much longer in an aqueous flow.  This 
behavior, typical of mixing in turbulent flows, is 
due to the sensitivity of the mixing rate to the 
presence of small-scale turbulent motions.  The 
critical value for this mixing transition is of the 
order of a thousand. 
  
   According to Eq. (9), the model predicts that 
the streamwise flame length xf/d should vanish 
in the limit of V!

Vn
" 0 .  Furthermore, the flame 

length goes as ! +1( )  raised to the 3/4 power.  
However, it is clear that the chord flame length 

cf/d cannot vanish in that limit.  Furthermore, 
similarity requires that the flame length be 
proportional to ! +1( )  there.  Experiments by 
[15], [16], [17] and others all show that the 
buoyant fluid must travel a specific distance 
from its source in order to entrain and to mix 
sufficient ambient fluid to dilute the source fluid 
to a specified concentration.  As a consequence, 
the chord flame length at any equivalence ratio 
is finite for V!

Vn
= 0 .  It is clear that two 

different regimes exist, with a transition between 
them at some V!

Vn
> 0 , where the chord flame 

length is a minimum. 

     From Fig 3, the velocity ratio for minimum 
chord flame length is evidently less than about 
0.6.  This is consistent with the value of about 
0.06 observed in the transverse jet, [6].  Such a 
minimum is expected to correspond in both 
flows to the formation of a pair of counter-
rotating vortices.  At this transition, the 
chordwise flame length is a minimum, 
corresponding to the most rapid entrainment.  In 
the case of a fire, this would be the most intense 
fire. 
 

VI. APPLICATION TO WILDFIRES 

     This study was originally motivated by 
questions related to wildland fire behavior. 
Among other factors, wildland fires are 
influenced by the intensity (energy release rate) 
of the fire, the rate of spread, and the variability 
of these properties over time. An intense, fast 
moving fire with highly variable rate or direction 
of spread is dangerous for fire fighters and more 
difficult to bring under control. Any insight into 
the properties likely to produce particularly 
dangerous fire behavior has the potential to save 
lives, as well as thousands of dollars. 

When applied to a wildland fire, it is first 
important to distinguish what is meant by flame 
length. The term “flame” as used previously in 
this paper refers to the visible mixing portion of 
the buoyant outflow where combustion is 
occurring.  
       In the wildland fire context, the minimum 
flame length mentioned previously corresponds 
to the maximum mixing, which would lead to 
the most turbulent fire behavior.  The integrated 
buoyancy flux F over the fire area is 
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with dimensions length4/time3. A simple 
dimensional argument suggests that the most 
intense fire would occur for a critical wind speed  
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where D is some measure of the transverse width 
of the fire at the surface. Using h to indicate the 
heat content of the fuel (J kg-1), w to indicate the 
areal fuel density (kg m-2) and r to indicate the 
fire’s rate of spread (m s-1) this can be written as              
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    Because the water tunnel design approximates 
a “point source” fire, it is most relevant to a fire 
where the transverse and longitudinal extents are 
comparable, or small. As an example application 
of this, consider the 2003 Canberra fire in 
Australia. The estimated fuel load and rate of 
spread for this fire are 2.5 kg m-2 and 1.3 m s-1, 
respectively. The heat content of forest fuels is 
approximately 17 MJ kg-1. Using these fire 
properties with appropriate values for g, ρ, cp, 
and Θ (9.8 m s-2, 1.1 kg m-3, 1004 J kg-1 K-1 and 
300 K, respectively) then yields a critical wind 
speed of 12 m s-1, or 43 km h-1. This suggests 
that eq (20) may provide reasonable wind speed 
values, given real values for the input parameters.  
 
    The flame length of a real fire would be 
slightly different from that in the water tunnel. In 
the water tunnel, the flow has all of the 
buoyancy introduced at the nozzle. In a real fire, 
on the other hand, buoyancy is continuously 
added from the origin to the flame tip. 
 
    Another flow feature that may threaten 
firefighters is Fric & Roshko lee vortices [18], 
shown in Fig 6.  While these tornado-like  

__________________ 

 

Fig 6. Flow visualization of the Fric & Roshko 
vortices. The nozzle is in the upper left corner.    

vortices seem to have little effect on the far-field 
flame length of the plume, they may play a 
critical role in some wildland fires by first 
lofting and then propagating burning embers 
downwind, as noted by [19].  Firebrands 
sometimes overrun and defeat fire breaks 
constructed by firefighters, igniting new fires 
downwind of old ones. 

VII. CONCLUDING REMARKS 
    The analysis and the comparison of the results 
with observation have concentrated on the far-
field behavior of transverse plumes.  From the 
conservation of buoyant force, the growth law of 
the corresponding temporal flow has been 
derived.  A simple dilution argument then 
predicts the flame length of the spatial flow.  The 
measured flame length of the transverse plume is 
in reasonable agreement with this description of 
the far-field behavior.  Notably, there is a 
minimum in the flame length at an intermediate 
velocity ratio.  This suggests the approximate 
conditions for the most intense wildfires.   
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